-
-
Notifications
You must be signed in to change notification settings - Fork 1.1k
feat: add stats/base/dists/halfnormal/pdf
#9694
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: develop
Are you sure you want to change the base?
Changes from 5 commits
2c80926
2d81b5e
3202b45
0c58e9c
c42a643
863f754
fd3444d
06b6dce
87f924f
c0308a7
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change | ||
|---|---|---|---|---|
| @@ -0,0 +1,247 @@ | ||||
| <!-- | ||||
|
|
||||
| @license Apache-2.0 | ||||
|
|
||||
| Copyright (c) 2018 The Stdlib Authors. | ||||
|
|
||||
| Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| you may not use this file except in compliance with the License. | ||||
| You may obtain a copy of the License at | ||||
|
|
||||
| http://www.apache.org/licenses/LICENSE-2.0 | ||||
|
|
||||
| Unless required by applicable law or agreed to in writing, software | ||||
| distributed under the License is distributed on an "AS IS" BASIS, | ||||
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| See the License for the specific language governing permissions and | ||||
| limitations under the License. | ||||
|
|
||||
| --> | ||||
|
|
||||
| # Probability Density Function | ||||
|
|
||||
| > [Half-normal][halfnormal-distribution] distribution probability density function (PDF). | ||||
|
|
||||
| <section class="intro"> | ||||
|
|
||||
| The [probability density function][pdf] (PDF) for a [half-normal][halfnormal-distribution] random variable is | ||||
|
|
||||
| <!-- <equation class="equation" label="eq:halfnormal_pdf" align="center" raw="f(x;\sigma)=\frac{\sqrt{2}}{\sigma\sqrt{\pi}}\, e^{-\frac{x^2}{2 \sigma^2}}" alt="Probability density function (PDF) for a half-normal distribution."> --> | ||||
|
|
||||
| ```math | ||||
| f(x;\sigma)=\frac{\sqrt{2}}{\sigma\sqrt{\pi}}\, e^{-\frac{x^2}{2 \sigma^2}} | ||||
| ``` | ||||
|
|
||||
| <!-- <div class="equation" align="center" data-raw-text="f(x;\sigma)=\frac{\sqrt{2}}{\sigma\sqrt{\pi}}\, e^{-\frac{x^2}{2 \sigma^2}}" data-equation="eq:halfnormal_pdf"> | ||||
| <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@51534079fef45e990850102147e8945fb023d1d0/lib/node_modules/@stdlib/stats/base/dists/halfnormal/pdf/docs/img/equation_halfnormal_pdf.svg" alt="Probability density function (PDF) for a half-normal distribution."> | ||||
| <br> | ||||
| </div> --> | ||||
|
|
||||
| <!-- </equation> --> | ||||
|
|
||||
| where `σ` is the scale parameter. | ||||
|
|
||||
| </section> | ||||
|
|
||||
| <!-- /.intro --> | ||||
|
|
||||
| <section class="usage"> | ||||
|
|
||||
| ## Usage | ||||
|
|
||||
| ```javascript | ||||
| var pdf = require( '@stdlib/stats/base/dists/halfnormal/pdf' ); | ||||
| ``` | ||||
|
|
||||
| #### pdf( x, sigma ) | ||||
|
|
||||
| Evaluates the [probability density function][pdf] (PDF) for a [half-normal][halfnormal-distribution] distribution with parameter `sigma` (scale parameter). | ||||
|
|
||||
| ```javascript | ||||
| var y = pdf( 2.0, 1.0 ); | ||||
| // returns ~0.108 | ||||
|
|
||||
| y = pdf( 1.0, 4.0 ); | ||||
| // returns ~0.193 | ||||
| ``` | ||||
|
|
||||
| If provided `NaN` as any argument, the function returns `NaN`. | ||||
|
|
||||
| ```javascript | ||||
| var y = pdf( NaN, 1.0 ); | ||||
| // returns NaN | ||||
|
|
||||
| y = pdf( 0.0, NaN ); | ||||
| // returns NaN | ||||
| ``` | ||||
|
|
||||
| If provided `sigma <= 0`, the function returns `NaN`. | ||||
|
|
||||
| ```javascript | ||||
| var y = pdf( 2.0, -1.0 ); | ||||
| // returns NaN | ||||
|
|
||||
| y = pdf( 2.0, 0.0 ); | ||||
| // returns NaN | ||||
| ``` | ||||
|
|
||||
| If provided a negative value for `x`, the function returns `0.0`. | ||||
|
|
||||
| ```javascript | ||||
| var y = pdf( -1.0, 1.0 ); | ||||
| // returns 0.0 | ||||
| ``` | ||||
|
|
||||
Planeshifter marked this conversation as resolved.
Show resolved
Hide resolved
|
||||
| </section> | ||||
|
|
||||
| <!-- /.usage --> | ||||
|
|
||||
| <section class="examples"> | ||||
|
|
||||
| ## Examples | ||||
|
|
||||
| <!-- eslint no-undef: "error" --> | ||||
|
|
||||
| ```javascript | ||||
| var uniform = require( '@stdlib/random/array/uniform' ); | ||||
| var logEachMap = require( '@stdlib/console/log-each-map' ); | ||||
| var pdf = require( '@stdlib/stats/base/dists/halfnormal/pdf' ); | ||||
|
|
||||
| var opts = { | ||||
| 'dtype': 'float64' | ||||
| }; | ||||
| var sigma = uniform( 10, 0.0, 20.0, opts ); | ||||
| var x = uniform( 10, 0.0, 10.0, opts ); | ||||
|
|
||||
| logEachMap( 'x: %0.4f, σ: %0.4f, f(x;σ): %0.4f', x, sigma, pdf ); | ||||
| ``` | ||||
|
|
||||
| </section> | ||||
|
|
||||
| <!-- /.examples --> | ||||
|
|
||||
| <!-- C interface documentation. --> | ||||
|
|
||||
| * * * | ||||
|
|
||||
| <section class="c"> | ||||
|
|
||||
| ## C APIs | ||||
|
|
||||
| <!-- Section to include introductory text. Make sure to keep an empty line after the intro `section` element and another before the `/section` close. --> | ||||
|
|
||||
| <section class="intro"> | ||||
|
|
||||
| </section> | ||||
|
|
||||
| <!-- /.intro --> | ||||
|
|
||||
| <!-- C usage documentation. --> | ||||
|
|
||||
| <section class="usage"> | ||||
|
|
||||
| ### Usage | ||||
|
|
||||
| ```c | ||||
| #include "stdlib/stats/base/dists/halfnormal/pdf.h" | ||||
| ``` | ||||
|
|
||||
| #### stdlib_base_dists_halfnormal_pdf( x, sigma ) | ||||
|
|
||||
| Evaluates the [probability density function][pdf] (PDF) for a [half-normal][halfnormal-distribution] distribution with parameter `sigma` (scale parameter). | ||||
|
|
||||
| ```c | ||||
| double y = stdlib_base_dists_halfnormal_pdf( 2.0, 1.0 ); | ||||
| // returns ~0.108 | ||||
| ``` | ||||
|
|
||||
| The function accepts the following arguments: | ||||
|
|
||||
| - **x**: `[in] double` input value. | ||||
| - **sigma**: `[in] double` scale parameter. | ||||
|
|
||||
| ```c | ||||
| double stdlib_base_dists_halfnormal_pdf( const double x, const double sigma ); | ||||
| ``` | ||||
|
|
||||
| </section> | ||||
|
|
||||
| <!-- /.usage --> | ||||
|
|
||||
| <!-- C API usage notes. Make sure to keep an empty line after the `section` element and another before the `/section` close. --> | ||||
|
|
||||
| <section class="notes"> | ||||
|
|
||||
| </section> | ||||
|
|
||||
| <!-- /.notes --> | ||||
|
|
||||
| <!-- C API usage examples. --> | ||||
|
|
||||
| <section class="examples"> | ||||
|
|
||||
| ### Examples | ||||
|
|
||||
| ```c | ||||
| #include "stdlib/stats/base/dists/halfnormal/pdf.h" | ||||
| #include "stdlib/constants/float64/eps.h" | ||||
| #include <stdlib.h> | ||||
| #include <stdio.h> | ||||
|
|
||||
| static double random_uniform( const double min, const double max ) { | ||||
| double v = (double)rand() / ( (double)RAND_MAX + 1.0 ); | ||||
| return min + ( v*(max-min) ); | ||||
| } | ||||
|
|
||||
| int main( void ) { | ||||
| double sigma; | ||||
| double x; | ||||
| double y; | ||||
| int i; | ||||
|
|
||||
| for ( i = 0; i < 10; i++ ) { | ||||
| x = random_uniform( 0.0, 10.0 ); | ||||
| sigma = random_uniform( STDLIB_CONSTANT_FLOAT64_EPS, 20.0 ); | ||||
| y = stdlib_base_dists_halfnormal_pdf( x, sigma ); | ||||
| printf( "x: %lf, σ: %lf, f(x;σ): %lf\n", x, sigma, y ); | ||||
| } | ||||
| } | ||||
| ``` | ||||
|
|
||||
| </section> | ||||
|
|
||||
| <!-- /.examples --> | ||||
|
|
||||
| </section> | ||||
|
|
||||
| <!-- /.c --> | ||||
|
|
||||
| <!-- Section to include cited references. If references are included, add a horizontal rule *before* the section. Make sure to keep an empty line after the `section` element and another before the `/section` close. --> | ||||
|
|
||||
| <section class="references"> | ||||
|
|
||||
| </section> | ||||
|
|
||||
| <!-- /.references --> | ||||
|
|
||||
| <!-- Section for related `stdlib` packages. Do not manually edit this section, as it is automatically populated. --> | ||||
|
|
||||
| <section class="related"> | ||||
|
|
||||
| </section> | ||||
|
|
||||
| <!-- /.related --> | ||||
|
|
||||
| <!-- Section for all links. Make sure to keep an empty line after the `section` element and another before the `/section` close. --> | ||||
|
|
||||
| <section class="links"> | ||||
|
|
||||
| [pdf]: https://en.wikipedia.org/wiki/Probability_density_function | ||||
|
|
||||
| [halfnormal-distribution]: https://en.wikipedia.org/wiki/Half-normal_distribution | ||||
|
|
||||
| [degenerate-distribution]: https://en.wikipedia.org/wiki/Degenerate_distribution | ||||
|
||||
| [degenerate-distribution]: https://en.wikipedia.org/wiki/Degenerate_distribution |
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,59 @@ | ||
| /** | ||
| * @license Apache-2.0 | ||
| * | ||
| * Copyright (c) 2026 The Stdlib Authors. | ||
| * | ||
| * Licensed under the Apache License, Version 2.0 (the "License"); | ||
| * you may not use this file except in compliance with the License. | ||
| * You may obtain a copy of the License at | ||
| * | ||
| * http://www.apache.org/licenses/LICENSE-2.0 | ||
| * | ||
| * Unless required by applicable law or agreed to in writing, software | ||
| * distributed under the License is distributed on an "AS IS" BASIS, | ||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| * See the License for the specific language governing permissions and | ||
| * limitations under the License. | ||
| */ | ||
|
|
||
| 'use strict'; | ||
|
|
||
| // MODULES // | ||
|
|
||
| var bench = require( '@stdlib/bench' ); | ||
| var uniform = require( '@stdlib/random/array/uniform' ); | ||
| var isnan = require( '@stdlib/math/base/assert/is-nan' ); | ||
| var EPS = require( '@stdlib/constants/float64/eps' ); | ||
| var pkg = require( './../package.json' ).name; | ||
| var pdf = require( './../lib' ); | ||
|
|
||
|
|
||
| // MAIN // | ||
|
|
||
| bench( pkg, function benchmark( b ) { | ||
| var sigma; | ||
| var opts; | ||
| var x; | ||
| var y; | ||
| var i; | ||
|
|
||
| opts = { | ||
| 'dtype': 'float64' | ||
| }; | ||
| x = uniform( 100, 0.0, 10.0, opts ); | ||
| sigma = uniform( 100, EPS, 10.0, opts ); | ||
|
|
||
| b.tic(); | ||
| for ( i = 0; i < b.iterations; i++ ) { | ||
| y = pdf( x[ i % x.length ], sigma[ i % sigma.length ] ); | ||
| if ( isnan( y ) ) { | ||
| b.fail( 'should not return NaN' ); | ||
| } | ||
| } | ||
| b.toc(); | ||
| if ( isnan( y ) ) { | ||
| b.fail( 'should not return NaN' ); | ||
| } | ||
| b.pass( 'benchmark finished' ); | ||
| b.end(); | ||
| }); | ||
|
Member
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Since the package exports a factory method, let's add a factory benchmark to match other distribution packages like bench( pkg+':factory', function benchmark( b ) {
var mypdf;
var opts;
var x;
var y;
var i;
opts = {
'dtype': 'float64'
};
mypdf = pdf.factory( 2.0 );
x = uniform( 100, 0.0, 10.0, opts );
b.tic();
for ( i = 0; i < b.iterations; i++ ) {
y = mypdf( x[ i % x.length ] );
if ( isnan( y ) ) {
b.fail( 'should not return NaN' );
}
}
b.toc();
if ( isnan( y ) ) {
b.fail( 'should not return NaN' );
}
b.pass( 'benchmark finished' );
b.end();
}); |
||
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,68 @@ | ||
| /** | ||
| * @license Apache-2.0 | ||
| * | ||
| * Copyright (c) 2026 The Stdlib Authors. | ||
| * | ||
| * Licensed under the Apache License, Version 2.0 (the "License"); | ||
| * you may not use this file except in compliance with the License. | ||
| * You may obtain a copy of the License at | ||
| * | ||
| * http://www.apache.org/licenses/LICENSE-2.0 | ||
| * | ||
| * Unless required by applicable law or agreed to in writing, software | ||
| * distributed under the License is distributed on an "AS IS" BASIS, | ||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| * See the License for the specific language governing permissions and | ||
| * limitations under the License. | ||
| */ | ||
|
|
||
| 'use strict'; | ||
|
|
||
| // MODULES // | ||
|
|
||
| var resolve = require( 'path' ).resolve; | ||
| var bench = require( '@stdlib/bench' ); | ||
| var EPS = require( '@stdlib/constants/float64/eps' ); | ||
| var uniform = require( '@stdlib/random/array/uniform' ); | ||
| var isnan = require( '@stdlib/math/base/assert/is-nan' ); | ||
| var tryRequire = require( '@stdlib/utils/try-require' ); | ||
| var pkg = require( './../package.json' ).name; | ||
|
|
||
|
|
||
| // VARIABLES // | ||
|
|
||
| var pdf = tryRequire( resolve( __dirname, './../lib/native.js' ) ); | ||
| var opts = { | ||
| 'skip': ( pdf instanceof Error ) | ||
| }; | ||
|
|
||
|
|
||
| // MAIN // | ||
|
|
||
| bench( pkg+'::native', opts, function benchmark( b ) { | ||
| var sigma; | ||
| var opts; | ||
| var x; | ||
| var y; | ||
| var i; | ||
|
|
||
| opts = { | ||
| 'dtype': 'float64' | ||
| }; | ||
| x = uniform( 100, 0.0, 10.0, opts ); | ||
| sigma = uniform( 100, EPS, 10.0, opts ); | ||
|
|
||
| b.tic(); | ||
| for ( i = 0; i < b.iterations; i++ ) { | ||
| y = pdf( x[ i % x.length ], sigma[ i % sigma.length ] ); | ||
| if ( isnan( y ) ) { | ||
| b.fail( 'should not return NaN' ); | ||
| } | ||
| } | ||
| b.toc(); | ||
| if ( isnan( y ) ) { | ||
| b.fail( 'should not return NaN' ); | ||
| } | ||
| b.pass( 'benchmark finished' ); | ||
| b.end(); | ||
| }); |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This is a new file, so the copyright year should be 2026 rather than 2018.